A cell line with characteristics of the periodontal ligament fibroblasts is negatively regulated for mineralization and Runx2/Cbfa1/Osf2 activity, part of which can be overcome by bone morphogenetic protein-2.

نویسندگان

  • Yoshinori Saito
  • Tatsuya Yoshizawa
  • Fumio Takizawa
  • Mika Ikegame
  • Osamu Ishibashi
  • Kazuhiro Okuda
  • Kohji Hara
  • Kotaro Ishibashi
  • Masuo Obinata
  • Hiroyuki Kawashima
چکیده

The periodontal ligament (PDL) is a connective tissue located between the cementum of teeth and the alveolar bone of the mandibula. It plays an integral role in the maintenance and regeneration of periodontal tissue. The cells responsible for maintaining this tissue are thought to be fibroblasts, which can be either multipotent or composed of heterogenous cell populations. However, as no established cell lines from the PDL are available, it is difficult to assess what type of cell promotes all of these functions. As a first step to circumvent this problem, we have cloned and characterized cell lines from the PDL from mice harboring a temperature-sensitive SV 40 large T-antigen gene. RT-PCR and in situ hybridization studies demonstrated that a cell line, designated PDL-L2, mimics the gene expression of the PDL in vivo: it expresses genes such as alkaline phosphatase, type I collagen, periostin, runt-related transcription factor-2 (Runx2) and EGF receptor, but does not express genes such as bone sialoprotein and osteocalcin. Unlike osteoblastic cells and a mixed cell population from the PDL, PDL-L2 cells do not produce mineralized nodules in the mineralization medium. When PDL-L2 cells were incubated in the presence of recombinant human bone morphogenetic protein-2 alkaline phosphatase activity increased and mineralized nodules were eventually produced, although the extent of mineralization is much less than that in osteoblastic MC3T3-E1 cells. Furthermore, PDL-L2 cells appeared to have a regulatory mechanism by which the function of Runx2 is normally suppressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of core binding factor Osf2/Cbfa-1 and bone sialoprotein in tooth development

The transcription factor Osf2/Cbfa1 is a key regulator of osteogenic differentiation while BSP, a major non-collagenous protein, is a marker of osteoblastic differentiation. To determine the relationship between Osf2/Cbfa1 and the formation of mineralized tissues in tooth development we have studied the temporal expression of Osf2/Cbfa1 and BSP mRNA using in situ hybridization. These studies sh...

متن کامل

رابطه درمان های ارتدنسی و انساج اطراف دندان ها

Normal 0 false false false EN-US X-NONE AR-SA Periodontal ligament changes depend on amount, duration and type of forces. Teeth movement toward periodontal ligament starts from the initial hours by formation of pressure and traction areas. These areas as well as vascular system must be preserved under the forces. Bone loss is resulted from osteocla...

متن کامل

Effects of rhBMP-2 gene transfection to periodontal ligament cells on osteogenesis

The present study aims to investigate the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the osteogenesis of periodontal ligament (PDL) cells. The expression vector of rhBMP-2 (pcDNA3.1-rhBMP-2) was established. PDL cells were obtained through the enzymatic digestion and tissue explant methods and verified by immunohistochemistry. Cells were classified into experimental (...

متن کامل

Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro

PURPOSE Periodontal ligament (PDL) cell differentiation into osteoblasts is important in bone formation. Bone formation is a complex biological process and involves several tightly regulated gene expression patterns of bone-related proteins. The expression patterns of bone related proteins are regulated in a temporal manner both in vivo and in vitro. The aim of this study was to observe the gen...

متن کامل

The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1.

Ossification of the posterior longitudinal ligament of the spine (OPLL) is the leading cause of myelopathy in Japan and is diagnosed by ectopic bone formation in the paravertebral ligament. OPLL is a systemic high bone mass disease with a strong genetic background. To detect genes relevant to the pathogenesis of OPLL, we performed a cDNA microarray analysis of systematic gene expression profile...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 115 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2002